THE PART OF THE PARTY OF THE PA

ПРОИЗВОДСТВЕННОЕ ОБУЧЕНИЕ

СПЕЦИАЛЬНОСТЬ «ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ И ПРОИЗВОДСТВО»

КУРС 2

СУЩНОСТЬ МЕТОДА

Титриметрический анализ — метод количественного химического анализа, который базируется на измерении точного объема раствора с точно известной концентрацией (титранта), истраченного на взаимодействие с определяемым веществом.

Метод титриметрии заключается в том, что к раствору определяемого вещества \boldsymbol{A} постепенно добавляют раствор реактива \boldsymbol{T} точно известной концентрации ($\boldsymbol{mumpahm}$):

A + T = продукт

Растворы реагента Т точно известной концентрации, который применяется для титрования в методах титриметрического анализа, называют *стандартным* или титрованым раствором или титрантом.

Точка эквивалентности (т.е.) – момент титрования, когда количества определяемого вещества и прибавленного титранту эквивалентные.

Конечная тимпрования (к.т.т.) — момент титрования, когда наблюдается изменение расцветки раствора, который титруется, и в этот момент прекращают добавление титранта.

ВЫБОР СПОСОБА ФИКСАЦИИ:

- 1) *визуально* за изменением расцветки раствора;
- 2) **визуально** за появлении мути или за изменением расцветки раствора, которое вызывается образованием продуктов реакции или индикатора, если **A** та **B** бесцветные;
- 3) физико-химическими (инструментальными)

методами.

ТРЕБОВАНИЯ К РЕАКЦИИ В ТИТРИМЕТРИИ:

- 1) Вещества, которые вступают в реакцию, должны реагировать в строго определенных количественных соотношениях (количественно).
- 2) Реакция должна проходить быстро и практически до конца.
- 3) Посторонние вещества не должны мешать титрованию определяемого вещества (специфичность).
- 4) Точка эквивалентности должна четко и точно.
- 5) Реакции должны проходить по мере возможности при комнатной t.
- 6) Титрование не должно сопровождаться побочными реакциями, которые искажают результаты анализа.

КЛАССИФИКАЦИЯ ТИТРИМЕТРИЧЕСКИХ МЕТОДОВ

Классифицировать титриметрические метод ики можно по нескольким независимым признакам:

- 1. по типу реакции между Х и R,
- 2. по способу проведения титрования и расчета результатов,
- 3. по способу контроля т.экв.

КЛАССИФИКАЦИЯ ПО ТИПУ ХИМИЧЕСКОЙ РЕАКЦИИ – НАИБОЛЕЕ ВАЖНАЯ!!!

- Химические реакции можно использовать для проведения титрований при соблюдении требований:
- 1). Определяемый компонент (аналит) должен количественно реагировать с титрантом.
- 2) Равновесие реакции должно устанавливаться как можно быстрее.
- 3) Реакция должна отвечать единственному и заранее известному стехиометрическому уравнению.

ПО ТИПУ ХИМИЧЕСКОЙ РЕАКЦИИ В ТИТРИМЕТРИЧЕСКОМ АНАЛИЗЕ ВЫДЕЛЯЮТ:

- -Кислотно-основные методы (метод нейтрализации), в основе которых лежит реакция нейтрализации
- -**Метод окисления восстановления** (оксидиметрия).
- -метод осаждения
- метод комплексообразования

Внутри каждого метода выделяют отдельные его варианты в зависимости от реагентов, используемых в каждом из вариантов в качестве титранта

Классификация титриметрических методик по типу используемой химической реакции

Реакция	Метод	Реагент (титрант)	Вариант метода	Определяемые вещества
_				_
Протолиз	Метод нейтрализации	HCl, HClO ₄ , HNO ₃	Ацидиметрия	Основания
		КОН, NaOH и др.	Алкалиметрия	Кислоты
Комплексообразование	Комплексометрия	ЭДТА	Комплексонометрия	Металлы и их соединения
		NaF KCN	Фторидометрия, цианидометрия	Некоторые металлы, органические вещества
Окисление-восстанов-	Редоксметрия	$\begin{array}{c} {\rm KMnO_4} \\ {\rm K_2Cr_2O_7} \end{array}$	Перманганатометрия хроматометрия	Восстановители
		KJ и Na ₂ S ₂ O ₃	Иодометрия	Восстановители, окислители, кислоты
		Аскорбиновая кислота	Аскорбинометрия	Окислители
Осаждение	Седиметрия	$AgNO_3$	Аргентометрия	Галогениды
		$Hg_2(NO_3)_2$	Меркуриметрия	
		KSCN	Роданометрия	Некоторые металлы
		Ba(NO ₃) ₂	Бариеметрия	Сульфаты

КЛАССИФИКАЦИЯ ПО СПОСОБУ ТИТРОВАНИЯ.

Обычно выделяют три способа:

- прямое,
- обратное,
- заместительное.

<u>ПРЯМОЕ ТИТРОВАНИЕ</u>

При прямом титровании к раствору определяемого вещества **непосредственно** добавляют титрант. Для проведения анализа по этому методу достаточно одного рабочего раствора.

ОБРАТНОЕ ТИТРОВАНИЕ

- к раствору анализируемого вещества приливают известный объем рабочего раствора, взятого в избытке. После этого титруют остаток первого рабочего раствора другим рабочим раствором и рассчитывают количество реагента, которое вступило в реакцию с анализируемым веществом.

ТИТРОВАНИЕ ЗАМЕСТИТЕЛЯ (КОСВЕННОЕ ТИТРОВАНИЕ) –

применяют в тех случаях, когда прямое или обратное титрование определяемого вещества невозможно или вызывает затруднения либо отсутствует подходящий индикатор.

При косвенном титровании к анализируемому раствору приливается в избытке реагент, который реагирует с определяемым веществом. Затем один из продуктов реакции определяется титрованием.

ТИТРАНТЫ

Титрантом называется раствор, с помощью которого производится титриметрическое определение, т.е. раствор, которым титруют. Чтобы проводить определение с помощью титранта, надо знать его точную концентрацию.

ДВА МЕТОДА ПРИГОТОВЛЕНИЯ ТИТРОВАННЫХ РАСТВОРОВ, Т.Е. РАСТВОРОВ ТОЧНО ИЗВЕСТНОЙ КОНЦЕНТРАЦИИ:

- 1. Точная навеска, взятая на аналитических весах, растворяется в мерной колбе, т.е. готовится раствор, в котором известно количество растворенного вещества и объем раствора растворы с приготовленным титром.
- 2. Раствор готовится приблизительно нужной концентрации, а точную концентрацию определяют титрованием, имея другой раствор с приготовленным титром растворы с установленным титром.

Одним из правил титриметрического анализа является следующее:

ТИТРЫ ТИТРАНТОВ НУЖНО УСТАНАВЛИВАТЬ В ТАКИХ ЖЕ УСЛОВИЯХ, В КАКИХ БУДЕТ ВЫПОЛНЯТЬСЯ АНАЛИЗ.

Для получения титрованных растворов часто пользуются *ФИКСАНАЛАМИ*, представляющими собой запаянные стеклянные ампулы, с точными навесками реактивов. На каждой ампуле имеется надпись, показывающая, какое вещество и в каком количестве находится в ампуле.

ПРИГОТОВЛЕНИЕ РАСТВОРА ИЗ ФИКСАНАЛА

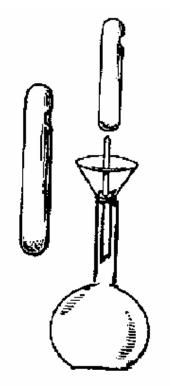


Рис. 1.1. Приготовление стандартного раствора из фиксанала

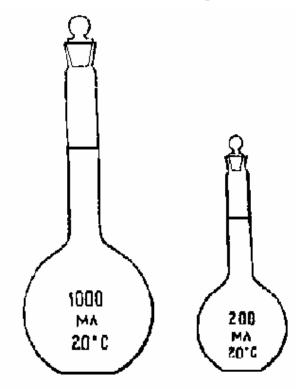


Рис. 1.2 Мерные колбы

ОПРЕДЕЛЕНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ И КОНЦА РЕАКЦИИ

При титровании употребляют не избыток реактива, а количество, эквивалентное количеству определяемого вещества. Необходимым условием при определении содержания вещества титриметрически является точное установление того момента, когда заканчивается реакция между титруемым веществом и титрантом, то есть фиксирование точки эквивалентности. Чем точнее определен конец реакции, тем точнее будет результат анализа.

Для определения конца реакции применяют особые реактивы, так называемые индикаторы. Действие индикаторов обычно сводится к тому, что они по окончании реакции между титруемым веществом и титрантом в присутствии небольшого избытка последнего претерпевают изменения и меняют окраску раствора или осадка. Когда из бюретки прибавлено столько титранта, что наблюдается заметное изменение окраски титруемого раствора, говорят что достигнута точка конца титрования.

Пройдите, пожалуйста, по ссылке, где визуально проиллюстрирован ПРОЦЕСС и МЕХАНИЗМ титрования

https://yandex.kz/video/search?from=tabbar&text=%D1%82%D0%B8%D1%82%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5

Просмотрите видео, которое показывает как проводится титрование в лабораторных условиях

https://yandex.kz/video/preview/?filmld=9762395182342555124&from=tabba r&parent-reqid=1585736465089628-11718605620097993400278prestable-app-host-sas-web-yp-180&text=%D1%82%D0%B8%D1%82%D1%80%D0%BE%D0%B2%D0%B 0%D0%BD%D0%B8%D0%B5